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Abstract – Sensor imperfections in the form of 

photoresponsenonuniformity (PRNU) patterns are a well-

established fingerprinting technique to link pictures to the camera 

sensors that acquired them.  The fingerprint image has to be 

compressed and encrypted by the authentication and matching 

purposes in the forensic tasks by using the PRNU values to be 

reconstructed the original image quality.The digital image 

processing is to be used for compressed camera fingerprint 

matching via random projections. Fingerprints are one of those 

irregular twists of nature. The fingerprints are to be used 

authentication and identification processes in forensic tasks such 

as detection of digital forgeries. Forensic tasks can to be 

performed in device identification problem, device linking 

problem, fingerprint matching problem. For random projections 

the compression technique is to be required with no information 

loss and to be measured by PRNUvalues. 

Index Terms – Random projections, PRNU, image forensics. 

1. INTRODUCTION 

IMAGING sensor imperfections can be considered as a unique 

fingerprint identifying a specific acquisition device, enabling 

various important forensic tasks, such as device identification, 

device linking, recovery of processing history, detection of 

digital forgeries [1]. The most common camera fingerprint is 

the photo-response nonuniformity (PRNU) of the digital 

imaging sensor [2]. The PRNU is due to slight variations in the 

properties of individual pixels, which producea noise-like, yet 

deterministic pattern affecting every image taken bysensor. 

Several works demonstrate that the PRNU is a robust 

fingerprint, usually surviving processing with the same size as 

the imaging sensor is due to thewide availability of sensors 

counting tens of millions of pixels, a realistic database of a few 

thousand sensors will require to store more than 1010 

individual pixel values in uncompressed format. In addition, 

the complexity of looking for a particular fingerprint in a large 

database is also very high, typically requiring the computation 

of a correlation with each fingerprint in the database. The issue 

of compression of PRNU patterns does not arise when the 

results of device identification have to be used as evidence in 

the court of law, because that case typically involves small 

databases and requires the highest accuracy. Instead, large 

scale problems, such as image classification, clustering or 

image retrieval problems based on camera identities, involve a 

huge number of PRNU patterns. Hence, these problems call for 

techniques to efficiently store and query such databases. 

Another problem with PRNU fingerprints is that the test image 

should be geometrically aligned with the fingerprint in the 

database. A possible solution is to provide several versions of 

the same fingerprint with different scale and/or cropping 

factors [5], however at the cost of managing an even larger 

database. 

The fingerprint image has to be compressed and encrypted by 

the authentication and matching purposes in the forensic tasks 

by using the PSNR values to be reconstructed the original 

image quality.        The digital image processing is to be used 

for compressed camera fingerprint matching via random 

projections. Fingerprints are one of those irregular twists of 

nature. The fingerprints are to be used authentication and 

identification processes in forensic tasks such as detection of 

digital forgeries. Forensic tasks can to be performed in device 

identification problem, device linking problem, fingerprint 

matching problem. For random projections the compression 

technique is to be required with no information loss and to be 

measured by PSNR values. 

Recently, several authors [6] started to address the problems 

related with the management of a large database of camera 

fingerprints. In [7] and [8], the authors propose a so-called 

fingerprint digest, which works by keeping only a fixed 

number of the largest fingerprint values and their positions, so 

that the resulting database is independent of the sensor 

resolution. An improved search strategy based on fingerprint 

digest is proposed in [9] and [10]. Fingerprint digests can also 

be used to ease fingerprint registration in case of geometrically 

distorted images, as shown in [11].  

An alternative solution is to represent sensor fingerprints in 

binary-quantized form [12]: even though the size of binary 

fingerprints scales with sensor resolution, binarization can 

considerably speed-up the fingerprint matching process.In the 

case of PRNU fingerprints, it is easy to show that preserving 

the distance between two fingerprints is equivalent to 

preserving the angle between them. Since PRNU fingerprints 

of different sensors are known to be highly uncorrelated, and 

thus to form wide angles, we can expect that also the angles 

between compressed fingerprints obtained by random 

projections will be wide. As a consequence, in this paper we 

adapt the standard correlation detector [1] to solve fingerprint 

matching and camera identification problems in the 

compressed domain. 
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As to practical issues, the complexity of randomly projecting a 

large fingerprint is greatly reduced by employing partial 

circulant matrices [15], which are known to be almost as good 

as fully random matrices. Moreover, inspired both by the work 

of [12] and by recent results in compressed sensing literature 

[16], we propose a binary version of the compressed fingerprint 

that further reduces storage and computational requirements. In 

Section II, we provide notations and definitions and we briefly 

review forensic tasks based on PRNU and random projections. 

The proposed compressive PRNU forensic systems are 

described in Section III, while theoretical performance is 

analyzed in Section IV. Extensive numerical results on 

different datasets are presented and discussed in Section V. 

Finally, in Section VI we draw some conclusions. 

2. BACKGROUND 

1. Notation and Definitions 

This is a real-world problem: the Federal Bureau of 

Investigation (FBI) maintains a large database of fingerprints. 

The FBI uses eight bits per pixel to define the shade of gray 

and stores 500 pixels per inch, which works out to about 700 

000 pixels and 0.7 megabytes per finger to store finger prints 

in electronic form. By turning to wavelets, the FBI has 

achieved a 15:1 compression ratio. In this application, wavelet 

compression is better than the more traditional JPEG 

compression, as it avoids small square artifacts and is 

particularly well suited to detect discontinuities (lines) in the 

fingerprint. Note that the international standard JPEG 2000 

includes the wavelets as a part of the compression and 

quantization process. This points out the present strength of the 

wavelets. 

We denote (column-) vectors and matrices by lowercase and 

uppercase boldface characters, respectively. The l-th element 

of column vector v is 𝜐ℓ. The i-th column of the matrix A is ai. 

The notation A·B denotes the elementwise product between 

matrices A and B, while A/B denotes element wise division. 

The notation 〈(𝑎, 𝑏)〉denotes the scalar product between 

vectors a and b, and  ||a||2  = √(𝑎, 𝑎) . 

The notation dH(a, b)denotes the Hamming distance between 

a, b ∈ {0, 1}m, where dH(a, b)= 
1

𝑚
∑ 𝑎𝑚

𝑖=1
𝑖

⊕ 𝑏𝑖 and ⊕ denotes 

the XOR operator. 

The notation a ∼ 𝒩(𝜇, Σ)means that the random vector a is 

Gaussian distributed, its mean is μ, and its covariance matrix is 

Σ . 

2. PRNU Forensics 

PRNU [1], [2] of imaging sensors is a property unique to each 

sensor array due to the different ability of each individual 

optical sensor to convert photons to electrons. This difference 

is mainly caused by impurities in silicon wafers and its effect 

is a noise pattern affecting every image taken by that specific 

sensor. Hence, the PRNU can be thought of as a spread–

spectrum fingerprint of the sensor used to take a specific 

picture or a set of pictures. The PRNU is multiplicative, i.e., if 

an imaging sensor is illuminated ideally with a uniform 

intensity i,1neglecting other sources of noise, the output of the 

sensor will be o = i + I . k where k represents the matrix 

characterizing the PRNU values.  

k exhibits the following properties. It has the same pixel size as 

the sensor, and carries enough information to make it unique to 

each sensor. It is universal in the sense that every optical sensor 

exhibits PRNU. It is present in each picture taken by a sensor 

except from completely dark ones (due to its multiplicative 

nature). It is stable under different environmental conditions 

and is robust to several signal processing operations. 

The PRNU characterizing one sensor can be extracted from a 

set of images (tipically, 20 to 50 smooth images are enough). 

The procedure to extract the fingerprint k of a sensor from a set 

of pictures depends on the model used to characterize the 

optical sensor. Denoting with ithe incident light intensity, the 

sensor output o can be modelled as expressed as given below, 

Where as gamma correlation is, 

 

wheregγis the gamma correction (g is different for each color 

channel and γ is usually close to 0.45), e accounts for other 

noise sources internal to the sensor while q models external 

noise (e.g. quantization). The goal is to extract k, so, after 

keeping the first order term in the Taylor expansion of [(1 + k) 

· i+ e]γ, the output image can be factorized as 

 

Where  is the ideal sensor output, oid· k is the PRNU 

term and  ollects other sources of noise.Assuming to be able to 

obtain through proper  filtering a denoised 

version of o, referred to as odn, then this can be used as an 

approximation of the ideal sensor output and subtracted from 

each side of (2) to obtain the so-called noise residual, which 

can be modeled as: 

 

where˜q accounts for ˜e and for the non-idealities of the  model 

[1]. Suppose now that a certain number C ≥ 1 of images is 

available. Considering the pixels of the noise term ˜q as zero–

mean Gaussian noise with variance σ2 and independent from 

the signal o · k, for each image l,l= 1, . . . ,C, it can be written 
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Under the above assumptions, the log–likelihood of w 
(l)/o(l)ngivenk satisfies 

 

from which the maximum likelihood estimate ˆk can be 

obtained as 

 

From the Cramer–Rao bound, the variance of the estimator can 

be estimated as from which we can notice that good photos for 

fingerprint evaluation are photos with high luminance (but not 

saturated) and smooth content (which lowers σ2). To improve 

further the quality of the estimation, artifacts shared among 

cameras of the same brand or model can be removed by 

subtracting row and column averages. In the case of color 

images, the estimation must be performed separately on each 

color channel, i.e., we must obtain ˆk R, ˆk G and ˆkB. After 

that, a “global” grayscale PRNU fingerprint will be obtained 

applying the usual RGB–to–gray conversion. 

Several forensic tasks can be performed using the 

aforementioned model for camera sensors. 

 

 

• The device identification problem [3] (also known in the 

biometrics field as verification) tests whether a given picture 

was taken by a specific device. An estimate of the fingerprint 

of the device has been extracted in advance from a set of 

training pictures and stored in a  database. The noise residual 

or a single-image fingerprint estimate is extracted from the 

query image and correlated with the fingerprint in the database. 

The original detector presented in [4] correlates the noise 

residual of the query image with the database fingerprint 

modulated by the query image intensity, denoted as corr(w, o · 

ˆk ). • The device linking problem [17] is presented with two 

images and must determine whether they have been acquired 

by the same device. The noise residuals of  he two photos are 

correlated, namely corr(w1,w2). We  ill not discuss this usage 

case in the remainder of the paper. 

• The fingerprint matching problem (also known in the\ 

biometrics field as identification) is presented with a database 

of fingerprint estimates and a set of pictures acquired by the 

same camera, which can be used to extract a fingerprint 

estimate. The goal is determine which device in the database 

(if present) has acquired the given pictures. Essentially, for all 

fingerprints, and if one fingerpring yields a correlation that is 

large enough, it is declared to be correct. 

3. Random Projections 

As will be explained in detail in Section III, PRNU databases 

can rapidly grow in size. For this reason, a method to 

“compress” them is required, with slight or ideally no 

information loss. One possible option is represented by 

Random Projections (RP), a low–complexity and yet powerful 

method for dimensionality reduction. The idea of RP is to 

project the original n–dimensional data to an m–dimensional 

subspace, with m <n, using a random matrix _ ∈ Rm×n. Hence, 

a collection of N n dimensional data D ∈ Rn×Nis reduced to an 

m–dimensional subspace A ∈ Rm×Nby 

 

The key property behind RP is the Johnson–Lindenstrauss 

lemma [13], concerning low–distortion embeddings of points 

from high–dimensional into low-dimensional Euclideanspace. 

The lemma states that a small set of points in a high-

dimensional space can be embedded into a space of much lower 

dimension in such a way that distances between the points are 

nearly preserved. 

Lemma 1 (Johnson–Lindenstrauss): Let ε ∈ (0, 1). For every 

set Q of |Q| points in Rn, if m is a positive integer such that  

 

It has been shown that f can be taken as a linear mapping 

represented by a random matrix _ ∈ Rm×n, whose entries are 

randomly drawn from certain probability distributions [14], 

like the Gaussian or Rademacherdistributions.The properties of 

RP are strictly related to the field of Compressed Sensing [18], 

[19], and in particular to the Restricted Isometry Property (RIP) 

of the sensing matrices [20]. In particular, in [20] it is shown 

that sensing matrices whose elements follow the 

aforementioned distributions respect the RIP as well as the JL 

lemma. One can think of the RIP as a JL lemma specific for 

sparse vectors. In fact, a matrix Rm×nis said to satisfy the RIP 

with constant δκif there exists a constant δκsuch that 

 

whereis every possiblesubmatrix obtained by keeping columns 

of and the techniques presented in this paper bear some 

similarity with techniques used in Locality Sensitive Hashing 
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(LSH) [21], [22]. Unlike standard hashing techniques, where 

the aim of the hashing function is to avoid collisions of hashes 

of different objects, LSH is a hashing technique for large 

databases using hashing functions whose aim is to maximize 

the probability of collision for objects close to each other rather 

than far apart. Then, the gap between the probability of 

collision of the hashes of similar objects and the probability of 

collision of the hashes of different objects is further amplified 

by concatenating several hashing functions. This allows one to 

perform, for example, a nearest–neighbor research in a large 

database using the hash of the query point retrieving elements 

stored in buckets containing that point. Several LSH families 

have been discovered in literature, each of them allowing a 

random choice of hashing functions. Among them, one, dubbed 

arccos, bears some similarity with 1-bit Compressed Sensing 

[16] and with the techniquesexplained in this paper. In words, 

the hashing function consists in the sign of the random 

projections, obtained with a sensing matrix with independent 

and identically distributed entries. 

 

We propose to compress the database and test fingerprint 

representing them through a small number of random 

projections. This operation can be seen as the product times an 

m × n sensing matrix ϕ

 

 

Random projections can effectively reduce the dimension of 

the space the fingerprints live in thanks to the fact that they 

approximately preserve the geometry of the point cloud 

composed of the fingerprints. Since random projections 

approximately preserve the angle between any two fingerprints 

and since this angle is wide thanks to their incoherent nature, 

we can expect a compressive system to exhibit robust 

performance, while dramatically reducing the problem size. 

The system has to store the compressed dictionary A and a way 

to generate the compressed fingerprint whenever a test pattern 

is presented, using the same _ (typically the seed of a 

pseudorandom number generator is stored). 

Since the preservation of the angles is the main interest for the 

matching problem, we will also consider the case of binary 

random measurements obtained as: 

 

In the case of binary measurements the correlation coefficient 

is replaced by the Hamming distance as test metric. 

 

In Sec. IV we discuss how the Hamming distance tendsto be 

concentrated around dS(ˆk, di ) = π-1arccosbeing arcosthe angle 

between two uncompressed fingerprints. The higher the 

correlation between fingerprints, the narrower the angle 

between them. Hence, the angle between two matching 

fingerprints is typically narrower than the angle between non-

matching fingerprints. This is reflected on the binary random 

projections, where the Hamming distance between matching 

fingerprints is typically smaller than that between non-

matching fingerprints. Binaryrandom projections allow to 

compress significantly, while the performance degradation is 

limited. As we will show in Sec. V, the degradation due to 

binarization is small but it allows to obtain a significant gain in 

terms of space. Moreover, computing the Hamming distance is 

a very fast and efficient operation. Binarization of the 

fingerprints was considered by Bayramet al. [12] as an 

effective method to reduce storage requirements. We go one 

step further by showing that binarization of random projections 

is effective as well, while further reducing the storage and 

computational requirements and providing additional 

flexibility by modulating the number of random measurements. 

Binarization of the fingerprints themselves can be seen as a 

special case of the presented framework, in which the sensing 

matrix is the identity. 

A.Camera Identification 

The camera identification problem is conceptually very similar 

to the fingerprint matching scenario. The main difference is 

that a single test image is available instead of a set of them. 

Chen et al. [4] showed that the optimal detector for this 

problem correlates the noise residual of the image with a 

modulated version of the fingerprint stored in the database, 

where the modulating term is the test image. Extending this 

detector to the compressed domain is not possible because of 

the elementwise product between test image and the fingerprint 

in the database. Instead, we investigate the performance of two 
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simplified detectors that can be readily mapped to the 

compressed domain. The first simplified detector correlates the 

noise residual w of the test image with the fingerprint stored in 

the database. Essentially this system eliminates the modulating 

effect of the test image, thus it will be sub-optimal unless the 

test image is a constant pattern. It is sufficient to apply the 

sensing matrix to both noise residual and fingerprint to translate 

this detector to the compressed domain. 

 

 

B.Detection Metrics 

The matching problem is concerned with finding the column of 

the dictionary that best matches a test compressed pattern. The 

test compressed fingerprint undergoes a binary hypothesism 

test for each column of the compressed dictionary. The two 

hypotheses are defined as: 

 

H0: the compressed test fingerprint and the reference are not 

from the same camera 

H1: the compressed test fingerprint and the reference are from 

the same camera 

• False Alarm: the null hypothesis was incorrectly rejected. 

• Detection: the null hypothesis was correctly rejected. 

• True Detection: the null hypothesis was rejected only for the 

correct camera. 

False acceptance corresponds to the case in which all the 

columns of the dictionary are tested, and at least one column 

containing the compressed fingerprint of a different camera 

with respect to the compressed fingerprint under test is declared 

as a match. On the other hand, true detection occurs when all 

the columns of the dictionary are tested, and a match is declared 

only for the column corresponding to the same camera of the 

compressed fingerprint under test. 

3. EXPERIMENTAL RESULTS 

We tested the performance of the compressed system under 

various conditions.We used two datasets of actual photographs 

to obtain the receiver operating characteristic (ROC) of the 

system under different scenarios. We constructed the first 

dataset (PoliTO database) by shooting photographs of walls 

with 8 different cameras. The uniform subject and the control 

over light conditions make those photos nearly ideal for the 

extraction of camera fingerprints. The second database is the 

publicly available Dresden image database [29]. Each database 

is constructed from a number of training photos, while T 

additional photos are used for testing. Extraction of the camera 

fingerprints is performed using the Camera Fingerprint toolbox 

[30], [31]. 

Referring to the events described in Sec. III-D and the 

probabilites defined in Section IV, we estimate the detection 

probability PD(i), averaged over all the cameras i= 1, . . . , N, 

with the true positive rate as 

 

while the false alarm probability PFA(i, j ), averaged over all 

the cameras i= 1, . . . , N and j _= i, is estimated with the false 

positive rate as 

 

Next, we estimate the true detection probability PT (i), 

averaged over all the cameras i= 1, . . . ,N, with the true 

detection rate, as 

 

while the false acceptance probability PF(i), averaged over all 

the cameras i= 1, . . . , N, is estimated with the false acceptance 

rate as 

 

A second ROC plots the True Detection Rate vs. the False 

Acceptance Rate. The ideal curve is the top-left–bottom-right 

diagonal. 

 

Empirical distribution of correlation between matching 

andnon-matching compressed fingerprints. 
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A.PoliTO Database 

The PoliTO database is composed of pictures from 8 different 

consumer cameras. The pictures are defocused photos of walls 

under good illumination conditions. Each camera has at least 

100 photos, all in landscape format, shot at the full resolution 

and maximum quality JPEG compression. We use60 photos of 

each camera to extract the ground truth fingerprint to be stored 

in the database, while the remaining ones are used for testing 

purposes.  

Each ROC curve is obtained by sweeping the threshold 

parameter τ . Test images are presented to the system one at a 

time, the noise residual is extracted and then compressed using 

the same sensing matrix used to compress the database. ROCs 

parametrized by the number of measurements. It can be noticed 

that a very small number of random measurements is enough 

to get almost indistinguishable performance from a perfect 

detector, while saving a considerable amount of storage space. 

Table I shows some actual figures for the space needed to store 

the dictionary of fingerprints on disk (without any additional 

form of lossless compression, which is anyway highly 

ineffective due to the high entropy of the PRNU and of the 

random measurements). 

B.Dresden Database 

The database assembled in [29] is composed of both flatfield 

images and scenes from indoor and outdoor environments. We 

selected 53 cameras having both flatfield and natural photos. 

The database is created from the flatfield images in order to 

have high quality fingerprints, while the test images are taken 

from the natural scenes. The natural photos present varying 

amounts of details and illumination conditions,thus making this 

dataset much more challenging than the PoliTO database. All 

photos are registered to the same sensor orientation. 

 

ROC curves for the Dresden database. Binarization of the 

fingerprints is compared against binarized random projections. 

 

ROC curves for the PoliTO  database. Binarization of the 

fingerprints is compared against binarized random projections 

4. OUTPUT FOR THE FINGERPRINT IMAGES 

 

Fig a: Input image of the given fingerprint.en input 

The output for the fingerprint images with compressed output 

it contains for no.of retained energy and no.ofzerosvalues for 

given input It has 96.0%  for its retained values.No.of.zeros had 

86.05%.  

 

Fig b: Thinned image for given fingerprint 

 

Fig c: Minutiae values for the given fingerprint. 

 

Thinned Image

Minutiae
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Fig d: compressed image for a given fingerprint. 

We compare the ROC obtained on the PoliTO database for 

Gaussian and circulant matrices, having the first row drawn as 

Gaussian i.i.d.. Experimental results shown in Fig. 8 confirm 

that circulant constructions perform very closely to the fully 

random ones, though they provide enormous advantages in 

terms of memory and computational requirements. 

5. CONCLUSIONS 

This paper proposed a technique to address the issues of storage 

and matching complexity in camera fingerprint databases, by 

using random projections. Motivated by the incoherent nature 

of fingerprints based on PRNU patterns of camera sensors, we 

showed that random projections can effectively preserve the 

geometry of the database and significantly reduce the 

dimension of the problem with small penalties. We 

characterized the usage of real-valued and binary random 

measurements from a theoretical point of view in terms of the 

detection and false alarm probabilities. 

Experimental tests have confirmed the validity of the proposed 

method on two databases of actual photographs. Practical 

issues such as the complexity of calculating random projections 

are of significant importance when dealing with million-pixel 

images, but we solved them by using circulant sensing 

matrices. The use of random projections forcompression of 

camera fingerprints paves the way to many interesting 

applications involving maintaining large databases of 

fingerprints or applications requiring transmission of 

fingerprints over bandlimited channels. From this perspective, 

random projections are significantly better than the other 

existing methods discussed in this paper because they can 

provide higher compression ratios and improved scalability, 

i.e., a fine-grained control over the compression/performance 

tradeoff by modulating the number of projections according to 

the specific needs, and an embedded representation where 

acompressed version of the fingerprint already embeds 

versions at higher compression ratios (fewer measurements 

used). 
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